1,281 research outputs found

    Analytic Solutions to the Constraint Equation for a Force-Free Magnetosphere around a Kerr Black Hole

    Full text link
    The Blandford-Znajek constraint equation for a stationary, axisymmetric black-hole force-free magnetosphere is cast in a 3+1 absolute space and time formulation, following Komissarov (2004). We derive an analytic solution for fields and currents to the constraint equation in the far-field limit that satisfies the Znajek condition at the event horizon. This solution generalizes the Blandford-Znajek monopole solution for a slowly rotating black hole to black holes with arbitrary angular momentum. Energy and angular momentum extraction through this solution occurs mostly along the equatorial plane. We also present a nonphysical, reverse jet-like solution.Comment: 6 pages, accepted for publication in Ap

    A Collision Avoidance Based Energy Efficient Medium Access Control Protocol for Clustered Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are typically deployed in energy constrained environments where recharging energy sources and replacing batteries are not viable. This makes energy efficiency in UWSNs a crucial directive to be followed during Medium Access Control (MAC) design. Multiplexing and scheduling based protocols are not ideal for UWSNs because of their strict synchronization requirements, longer latencies and constrained bandwidth.This paper presents the development and simulation analysis of a novel cross-layer communication based MAC protocol called Energy Efficient Collision Avoidance (EECA) MAC protocol. EECA-MAC protocol works on the principle of adaptive power control, controlling the transmission power based on the signal strength at the receiver. EECA-MAC enhances the conventional 4-way handshake to reduce carrier sensing by implementing an enhanced Request to Send (RTS) and Clear to Send (CTS) handshake and an improved back-off algorithm.Simulation analysis shows that the measures taken to achieve energy efficiency have a direct effect on the number of packet retransmissions. Compared to the Medium Access with Collision Avoidance (MACA) protocol, EECA-MAC shows a 40% reduction in the number of packets that are delivered after retransmissions. This reduction, coupled with the reduced signal interference, results in a 16% drop in the energy utilized by the nodes for data transmission

    A Quality of Service Aware Source Routing Based Protocol for Underwater Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) handle many underwater applications such as environment monitoring, surveillance and navigation. These applications generate varied types of traffic such as continuous bit rate, sporadic and different packet sizes, leading to additional QoS requirements that are traffic and application dependent. This paper presents the development of a Quality of Service Aware Source Routing (QASR) protocol. QASR discovers multiple paths from the sources to the sinks and selects the most QoS compatible route among them. QASR is distinctive because it incorporates multiple QoS parameters such as Signal to Noise Ratio (SNR), latency and residual energy. Depending on which of these parameters are chosen, QASR has three variants, namely, QASR-Latency (QASR-L), QASR-Residual Energy (QASR-RE) and QASR-Signal to Noise Ratio (QASR-SNR). The performance of QASR protocol is compared against traditional source routing protocols, with simulations showing a reduction of about 10% to 20% in latency and about 5% to 10% lesser energy consumption than source routing. QASR protocol exhibits comparable performance to classic source routing protocols while simultaneously adhering to the QoS requirements of the application. It is also worth noting that the performance profile of all the three variants of QASR do not have sudden and drastic variations, with the performance profiles showing consistent trend-lines

    The role of enzymes of the glyoxalase system in relation to complications in type II diabetes mellitus

    Get PDF
    Background: Metabolism of methylglyoxal by the glyoxalase system may be linked to the development of diabetic complications. It was considered worthwhile to find out whether changes observed in the levels of glyoxalase I, glyoxalase II, aldose reductase & D-lactate are prognostic indicators for the development of complications of diabetes or merely reflect the result of changes associated with complications.Methods: The glyoxalase system was characterized in erythrocytes of blood samples from patients with type II diabetes mellitus (n=177), and normal healthy control subjects (n=40). Diabetics were divided into 3 main groups based on presence or absence of complications.Results: The concentrations of RBC glyoxalase I, glyoxalase II, aldose reductase, and D-lactate were significantly increased in all groups of diabetic patients, (P <0.001) relative to controls. Comparison between groups showed maximum rise of enzymes in group I and group III (P <0.001); and maximum rise of D-lactate in group III (P <0.001). Within the groups of patients with complications, enzyme levels were markedly increased in patients with IHD/PVD (ischaemic heart disease/peripheral vascular disease) and decreased in patients with nephropathy.  Conclusion: Results of this study suggests a positive relationship between increased activity of erythrocyte enzymes of glyoxalase system and poor or moderate glycemic control. The increased enzyme levels in patients without complications indicate their role as prognostic markers for development of complications. Molecular mechanisms for development of Nephropathy appear to be different from those of Neuropathy and Retinopathy.

    Delay Distributions in Discrete Time Multiclass Tandem Communication Network Models

    Get PDF
    An exact computational algorithm for the solution of a discrete time multiclass tandem network with a primary class and cross-traffic at each queue is developed. A sequence of truncated Lindley recursions is defined at each queue relating the delays experienced by the first packet from consecutive batches of a class at that queue. Using this sequence of recursions, a convolve-and-sweep algorithm is developed to compute the stationary distributions of the delay and inter-departure processes of each class at a queue, delays experienced by a typical packet from the primary class along its path as well as the mean end-to-end delay of such a packet. The proposed approach is designed to handle the non-renewal arrival processes arising in the network. The algorithmic solution is implemented as an abstract class which permits its easy adaptation to analyze different network configurations and sizes. The delays of a packet at different queues are shown to be associated random variables from which it follows that the variance of total delay is lower bounded by the sum of variances of delays at the queues along the path. The developed algorithm and the proposed lower bound on the variance of total delay are validated against simulation for a tandem network of two queues with three classes under different batch size distributions
    corecore